unnjena
궁금한이야기J
unnjena
전체 방문자
오늘
어제
  • 분류 전체보기 (28)
    • Graduate M.S. (0)
      • Paper Review (0)
      • Project Related (0)
    • Undergraduate (14)
      • ML & DL (9)
      • Otherwise (1)
      • Programming (4)
    • etc. (9)

블로그 메뉴

  • 홈
  • 태그
  • 방명록

공지사항

인기 글

태그

  • Python
  • Upstage
  • 세바시
  • 컴퓨터네트워크 #인터넷
  • 인공지능입문
  • AI교육
  • AI_Production_Lifecycle
  • TEST
  • 업스테이지
  • Deepfake
  • 지나영교수님
  • network #edge #컴퓨터네트워크
  • 취준일기
  • 인생질문
  • network #delay #loss #throughput #컴퓨터네트워크
  • Annotation #tool
  • 카공
  • 취준생
  • 서비스기획
  • Jump_into_the_AI_World
  • 컴퓨터네트워크 #Traceroute
  • #computer_network #컴퓨터네트워크
  • PM
  • Coding

최근 댓글

최근 글

티스토리

hELLO · Designed By 정상우.
unnjena

궁금한이야기J

[Research] 문헌조사① : Face Mask Detection
Undergraduate/ML & DL

[Research] 문헌조사① : Face Mask Detection

2020. 9. 19. 18:01

Face Mask Detection using Transfer Learning of InceptionV3

Authors

  • G. Jignesh Chowdary 1 , Narinder Singh Punn 2 , Sanjay Kumar Sonbhadra 2 , and Sonali Agarwal 2

Abstract

  • According to WHO, the most effective preventive measure against COVID-19 is wearing a mask in public places and crowded areas.
  • In this paper, a transfer learning model is proposed to automate the process of identifying the people who are not wearing mask.
  • The proposed model is built by fine-tuning the pre-trained state-of-the-art deep learning model, InceptionV3.
  • The proposed model is trained and tested on the Simulated Masked Face Dataset (SMFD).

 

  • Image augmentation technique is adopted to address the limited availability of data for better training and testing of the model.

  • an accuracy of 99.9% during training and 100% during testing.

 

Introduction

  • An initiative was started by the French government to identify passengers who are not wearing masks in the metro station. AI software was built and integrated with security cameras in Paris metro stations[2:Chowdary, G.J. et al.].
  • The main aim of this work is to develop a deep learning model for the detection of persons who are not wearing face mask. (Using the transfer learning of InceptionV3)
    • Section 2 : the review of related works in the past.
    • Section 3 : describes the dataset.
    • Section 4 : describes the proposed model
    • Section 5 : presents the experimental analysis of the proposed transfer-learning model.
    • Section 6 : the conclusion of the proposed work

너무 small data set 인듯..
결과를 신뢰하기 어려운 그래프 개형,,

 

 

Conclusion

  • The proposed transfer learning model achieved accuracy and specificity of 99.92%, 99.9% during training, and 100%, 100% during testing on the SMFD dataset.
  • The same work can further be improved by employing large volumes of data and can also be extended to classify the type of mask, and implement a facial recognition system, deployed at various workplaces to support person identification while wearing the mask.

Insight

  • InceptionV3 활용 가능성
  • large data set의 필요성
  • Task level
    • 1 : mask face detection
    • 2 : mask face recognition

'Undergraduate > ML & DL' 카테고리의 다른 글

[DL] 좋은 초기화 방법💡  (0) 2021.02.05
[winSCP] 서버 사용 시 유용한 프로그램  (0) 2020.05.20
[Face Recognition] 얼굴 인식 출입, 어떻게 하는걸까?  (0) 2020.05.20
[PyTorch tutorial] 컴퓨터 비전(Vision)을 위한 전이학습(Transfer Learning)  (0) 2020.05.14
[GPU] 다수의 GPU 중 원하는 GPU 타겟팅하기  (0) 2020.05.13
    'Undergraduate/ML & DL' 카테고리의 다른 글
    • [DL] 좋은 초기화 방법💡
    • [winSCP] 서버 사용 시 유용한 프로그램
    • [Face Recognition] 얼굴 인식 출입, 어떻게 하는걸까?
    • [PyTorch tutorial] 컴퓨터 비전(Vision)을 위한 전이학습(Transfer Learning)
    unnjena
    unnjena
    모든 궁금증과 그 해답을 담는 공간 Github : https://github.com/JaeheeRyu

    티스토리툴바